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Adhesion of solids
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We report results of studies of adhesion of two solids on a microscopic level. We show that the Johnson-
Kendall-Roberts theory@Proc. R. Soc. London A324, 301~1971!# remains valid even at this level, and that the
effects of roughness and an intervening fluid can be accounted for by adjusting the value of the work of
adhesion. We study adhesion hysteresis and demonstrate that, in our system, it arises from bulk effects. We
also find that the detachment of spherical particles from solid surfaces occurs at smaller values of the shear rate
than predicted by continuum theory, due to slip between the particle and the solid surface which is not taken
into account by continuum theories.@S1063-651X~97!03409-0#

PACS number~s!: 64.60.Ht, 68.70.1w, 92.40.Fb, 92.40.Gc
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I. INTRODUCTION

The problem of the behavior of two spheres or a sph
and a plane pressed against each other~Fig. 1! has a long
history. The earliest study is due to Hertz, who solved
problem by assuming that adhesion forces between the
surfaces were negligible@1#. He showed that the radius of th
contact area isa5(RF/K)1/3 and that the central displace
ment is d5a2/R, where R5R1R2 /(R11R2), K5 3

4 @(1
2s1

2)/E11(12s2
2)/E2#, R1,2, s1,2, andE1,2 are the radii,

the Poisson’s ratios, and the Young’s moduli for the tw
spheres, andF is an applied load. In 1971, Johnson, Kenda
and Roberts~JKR! @2# improved the Hertz theory by incor
porating the effects of adhesion through the requiremen
energy minimization. The JKR theory predicts that

a35
R

K
@F13pRW1A6pRWF1~3pRW!2#, ~1!

d5
a2

R F12
2

3 S a0

a D 3/2G ~2!

and the pressure within the contact area is

P~r !5
3Ka

2pR
@12~r /a!2#1/22S 3KW

2pa D 1/2

@12~r /a!2#21/2,

~3!

wherer is the radial coordinate in the contact plane~see Fig.
1!, W is the surface energy per unit area, anda0
5(6pR2W/K)1/3 is the contact radius under zero load (F
50).

One of the drawbacks of the JKR analysis is that it p
dicts an infinite stress at the edge of the contact area@the
second term on the right-hand side of Eq.~3!#. This problem
arises because the JKR theory is a continuum theory
implicitly assumes that the molecular forces act over infi
tesimally small distances. If one takes into account the fin
range of molecular forces, assuming, for example,
Lennard-Jones potential for them, the singularity is remo
561063-651X/97/56~3!/2626~9!/$10.00
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@3#. Apart from its breakdown within the few angstrom
from the edge of the contact area, the JKR theory has b
shown to describe experimental results for molecula
smooth surfaces on a macroscopic scale quite well@2,4,5#.

However, there are very few studies of adhesion on
microscopic scale. Except for the pioneering work of Lan
man and co-workers@6#, who studied tip-substrate interac
tions in an atomic-force microscope, and Thompson a
Robbins@7#, who were interested in the stick-slip motion o
two solid surfaces separated by thin layer of fluid, most
proaches to this problem are based on continuum mecha
At the same time, the problem of what happens on a mole
lar scale when two solid bodies are pressed into contact
become even more important recently due to rapidly grow
interest in nanotechnology.

Another limitation of the JKR theory is its assumption
absolutely smooth surfaces. In reality, most particles
rough, and it is well known that even small asperities c
have a significant effect on adhesion. Also, the JKR the
does not describe important situations such as the mech
cal contact of two solid bodies in the presence of an int
vening fluid.

FIG. 1. A sketch of a sphere pressed against a planar surfac
2626 © 1997 The American Physical Society
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56 2627ADHESION OF SOLIDS
In this work, we use molecular dynamics~MD! simula-
tions to study adhesion of spherical particles, at the mole
lar level, on smooth and rough surfaces, with and without
intervening fluid. Our results show that the JKR theo
works well for smooth surfaces even when the size of
adhering particles is comparable with that of individual m
ecules. We also show that the effects of roughness an
intervening fluid can be accounted for by an effective va
of the surface energyW, which depends on the configuratio
of the two solids and the fluid. We study the hysteresis
sociated with the adhesion of solids and find that in o
system it is due to bulk effects. We conclude with a study
the detachment of solid particles from solid surfaces, an
teresting and important technological problem, which
closely related to the adhesion of solids.

II. MOLECULAR DYNAMICS

We have used a standard MD algorithm in which m
ecules interact via a pairwise Lennard-Jones potential:

Vi j ~r !54eFDi j S r

s D 212

2Ci j S r

s D 26G . ~4!

The natural time unit is given byt5sA(m/e), wherem is
the molecular mass. In the remainder of this paper all dim
sional quantities given as pure numbers will be understoo
multiplied by an appropriate combination ofs, e, and m.
The coefficientsC and D in Eq. ~4! are used to tune the
strength of interaction between molecules of different s
cies.

In our simulations, Newton’s equations of motion we
integrated using a fifth order predictor-corrector algorith
with a time step of 0.0025t. A layered-linked cell algorithm
@8# was implemented to speed up the computation. The
ometry of our simulations is shown in Fig. 2—a spheric
ball is squeezed by two solid walls, giving two adhesi
contacts. The wall molecules were arranged in an fcc lat

FIG. 2. A snapshot of the initial molecular configuration for t
MD simulations of adhesion.
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with a lattice parameter of 1.26s, their mass was chosen t
be very large (108), so that the Young’s modulus of th
walls Ew5` andK5 3

4 @(12sb
2)/Eb#. In our simulations we

used a ball of radiusR57.12, consisting of 143 individual
molecules, which did not possess any long-range order.
obtain this ball, we started with the molecules arranged i
simple cubic lattice, and switched off the attraction betwe
them for 1.25t, allowing the ball to expand and lose its la
tice structure in the process. After 1.25t we switched the
attraction on, and the ball molecules coalesced togethe
form the ball used in our simulations. If instead one use
ball in which the molecules are arranged in a lattice w
long range order, as one compresses the ball one obse
huge jumps in the values of the force acting on it. The jum
occur each time the number of molecular layers in the b
decreases by one and the ball undergoes structural chan

The coefficientsC andD in Eq. ~4! wereCbb58.0, Dbb
51.25 for the interaction between the ball molecules a
Cbw5Dbw55.0 for the interaction between the ball and wa
molecules. Our specific choice ofC and D is not
important—we have verified that our results are not sensi
to small changes inC andD. To determine the surface en
ergy per unit areaW, we cut our ball into two halves by a
horizontal plane passing through its center, took just the
per half and measured the energy of the interaction betw
the molecules of the bottom wall and the molecules of
half ball as a function of the separation between the bott
wall and the half ball.~This geometry was used in order t
obtain a planar contact area!. W is given by the minimum
interaction energy divided bypR2, whereR is the ball ra-
dius. This procedure givesW513.0. Alternatively, one may
assume that thez,0 region of space is filled with a jellium
of uniform density corresponding to that of the wall mo
ecules, while thez.d region of space is occupied by a je
lium of the ball molecules. One may then integrate the int
actions between them to obtain the energy of interaction
unit area as a function ofd. W is given by the maximum
attractive interaction energy. This method yieldsW513.2,
which is quite close to the previous value of 13.0. The te
peratureT was chosen to be 1.0. At this temperature the b
was in the solid phase with values ofEb and sb , yielding
K5264.4. To obtain the values ofEb andsb , we imposed a
small uniform deformation on the ball and used Hooke’s l
@9#:

s ik5~l12/3m!ull d ik12m~uik21/3ull d ik!, ~5!

wheres ik is the stress tensor,ui is the displacement vector
uik5 1

2 (]ui /]xk1]uk /]xi) is the strain tensor, andl andm
are the Lame coefficients withEb5m(3l12m)/(l1m)
and sb5(l/2)/(l1m). If the deformation is such that th
strain tensor is uniform, then the stress tensor, being line
related to the strain tensor, is also uniform, and thus equa
its average value@9#:

s i j 5^s i j &5
1

V R xiF j

R
dA, ~6!

where the integration is over the surface of the ball,V is the
ball volume,xi is thei th coordinate of the element of the ba
surface, andF j is the j th component of the force acting o
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FIG. 3. ~a! Radius of contact areaa vs applied forceF for the smooth wall. Different symbols represent results obtained in f
independent runs with two independent adhesive contacts in each run. Solid line represents JKR prediction withW513.0, dashed lines
represents Hertz prediction (W50). ~b! A snapshot of the molecular configuration corresponding to pointA in ~a!. ~c! A snapshot of the
molecular configuration corresponding to pointB in ~a!. ~d! Radius of contact areaa vs applied forceF for the smooth wall with a fluid layer
on top of it. Different symbols represent results obtained in four independent runs with two independent adhesive contacts in each
line represents JKR prediction withW513.0, dashed lines represents Hertz prediction (W50).
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this element. The first term in Eq.~5! corresponds to pure
compression and the second term corresponds to pure s
Thus, by imposing separately compression and shear,
using Eq.~6! to calculate the stress tensor, one can obtain
values ofl andm, from which it is straightforward to calcu
late Eb , sb , andK.

III. ADHESION

We begin by assessing how well the JKR theory descri
adhesion of smooth surfaces on a microscopic scale. To
knowledge, this is the first study of its kind.

Initially, the two walls were placed far apart, and the b
ar.
nd
e

s
ur

l

was equilibrated for 25t. After the ball was equilibrated we
fixed the positions of 287 molecules in the middle section
the ball, whosez coordinates were within 0.5s of the center
of mass of the ball, and started moving the walls symme
cally towards the center of the ball. Each wall was moved
0.1s during a time interval of 0.5t and then the system wa
allowed to relax for 0.25t. To ensure that the system wa
fully equilibrated, we performed some runs in which the sy
tem was allowed to relax for 0.5t instead of 0.25t, and we
found that the results were not affected by this change. O
the next 0.5t, we measured the forceF acting on the ball
from each wall, the central displacementd and the radii of
both contact areasa ~see Fig. 1!, after which the whole cycle
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56 2629ADHESION OF SOLIDS
was repeated again. The wall induces layering of the
molecules with thez coordinates of the molecules formin
the first layer within 0.5s of the lowest molecule. In order to
calculate the radius of the lower contact area, we identi
the lowest ball molecule~the molecule that had the smalle
z coordinatezmin!, considered all ball molecules withz co-
ordinates betweenzmin and zmin10.5s, projected them on
thex-y plane, and calculated the effective radiusa, using the
expression~designed to yield the correct radius for a circu
geometry!

a2/25

(
i

@~xi2xc!
21~yi2yc!

2#

N
.

Here the sum is over all ball molecules withz coordinates
betweenzmin andzmin10.5s, N is the number of these mol
ecules,xc andyc are thex andy coordinates of the center o
mass of the group of these molecules. To determine the
tral displacementd, we used two methods. The first consi
ered the position of the lowest ball molecule; since the ce
of the ball does not move in our simulations,d is given by
the currentz coordinate of the lowest ball molecule minu
the initial position of this molecule. The second method lin
d to the position of the wall. Here one assumes thatd is
given by thez coordinate of the upper layer of wall mo
ecules plus a constant, which was chosen optimally to p
duce the best fit. Although the two methods lead to sim
results, they are both not very reliable, especially whend is
small: the first method relies on the position of a single m
ecule, while the second does not depend on the details o
configuration of the ball molecules. Figure 3~a! shows the
radius of contact areaa versus the applied loadF; the solid
line is the JKR prediction, the dotted line corresponds to
Hertz theory, and the data points represent the MD res
obtained in four independent runs. Figures 3~b! and 3~c!
show snapshots of our system, corresponding to pointsA and
B on Fig. 3~a!. The JKR theory describes our results qu
well. We note here that we were unable to study the dec
pression of the ball using this method—the relaxation time
the ball during decompression was longer than the dura
of our simulations. In order to study adhesion hysteresis
employed a different technique described in the followi
section.

Next, we put a wetting, one-molecule-thick layer of
fluid on each of the walls. The interaction coefficients for t
fluid molecules in Eq.~4! were D f f5Cf f51.0, D f b5Cf b
51.0, andD f w5Cf w52.0. The attraction between the wa
and the fluid molecules was strong enough to prevent a
nificant fraction of the fluid molecules from evaporatin
Figure 3~d! showsa versusF for this case. One may inter
pret the result as showing two distinct regimes; at small
plied loadsF, the MD data follow the Hertz theory, while a
large values ofF they are well described by the JKR theor
This behavior can be explained by the fact that the He
theory is theW50 limit of the JKR theory. The effective
work of adhesion,W52.0, in the presence of the intervenin
fluid is about 15% of the work of adhesion without the flui
At small values ofF, the ball molecules interact mainly wit
the fluid molecules and because of that the effective work
adhesionW is much smaller than for the ball-wall interactio
ll
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and the data are described by the Hertz theory. As the
plied load F is increased, the fluid is squeezed from t
contact region, and the ball molecules begin to ‘‘feel’’ th
wall molecules, thus increasingW and switching to the JKR
regime.

We also considered the effects of roughness. We put
ditional wall molecules on each wall with random choic
for their x andy coordinates and az displacement of 1.26s
~equal to the wall lattice parameter! from the crystalline wall.
Figure 4~a! showsa versusF for this case. One can see th

FIG. 4. ~a! Radius of contact areaa vs applied forceF for the
rough wall. Different symbols represent results obtained in fo
independent runs with two independent adhesive contacts in
run. Solid line represents JKR prediction withW513.0, dashed
lines represents Hertz prediction (W50). ~b! Radius of contact
areaa vs applied forceF for the rough wall with a fluid layer on top
of it. Different symbols represent results obtained in four indep
dent runs with two independent adhesive contacts in each run. S
line represents JKR prediction withW513.0, dashed lines repre
sents Hertz prediction (W50).
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2630 56VERGELES, MARITAN, KOPLIK, AND BANAVAR
the curve is shifted down with respect to the curve for
smooth surface, which follows from a decrease in the eff
tive work of adhesionW. It is hard to obtain the exact valu
of the work of adhesion for rough surfaces, but it is clear t
it should be smaller than that for smooth surfaces. Fig
4~b! showsa versusF for the case of the rough surface wi
an intervening fluid, which has the same parameters as
fore. Again, one can see two different regimes correspond
to low and high values ofF.

To conclude this section, we also note that the JKR~or

FIG. 5. ~a! Applied forceF vs central displacementd for the
smooth wall. Different symbols represent results obtained in f
independent runs with two independent adhesive contacts in
run. Solid line represents JKR prediction withW513.0, dashed
lines represents Hertz prediction (W50). ~b! Radius of contact
areaa vs central displacement ford for the smooth wall. Different
symbols represent results obtained in four independent runs
two independent adhesive contacts in each run. Solid line repres
JKR prediction withW513.0, dashed lines represents Hertz pred
tion (W50).
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Hertz! theory predicts higher values of the central displa
mentd than obtained in our simulations for the same valu
of applied forceF or contact area~Fig. 5!. Even though the
numerical values ofa andF for small d are necessarily ap
proximately in accord with expectations, the overall tre
does not agree with theory. These discrepancies are prob
due to the difficulty in extracting a reliable value ofd from
our measurements.

IV. ADHESION HYSTERESIS

The phenomenon of hysteresis is encountered in m
different contexts, such as magnetism, fluid flow, and m
chanics@10#. Recent research@11,12# has shown that capil-
lary condensation in porous media and domain dynamic
spin systems exhibit return-point hysteresis. Return-po
hysteresis is often described by the Preisach model@13#, in
which the system is assumed to be made up of indepen
elementary hysteresis domains. It is well known that ad
sion is also associated with hysteresis@3#. The origins of
adhesion hysteresis may be traced to processes on the
faces of the solids or they can arise from bulk dissipat
@14#.

To study hysteresis in our system, we employed a met
of energy minimization, because the MD technique is i
practical due to the very long relaxation time of the b
during decompression. We took the ball, described in
previous section, and let it relax, allowing each molecule
move to a position corresponding to a local energy mi
mum. During this process the walls were placed far aw
from the ball. The walls, used by us in this study, we
smooth 3-9 walls. They interacted with the molecules co
prising the ball via a 3-9 potential in thez direction:

V~z!54e~Dsz
292Csz

23!,

whereDs andCs were chosen so that the work of adhesi
W for these walls was the same as for the molecular walls
the previous section.

r
ch

ith
nts
-

FIG. 6. Applied forceF as a function of central displacementd
showing pronounced hysteresis loops.
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56 2631ADHESION OF SOLIDS
After the ball molecules reached a local energy minimu
we moved the walls towards the ball in small incremen
steps. After each step, the system~the ball and the walls! was
relaxed into a local energy minimum. We measured
forces acting on the ball from the walls, the radii of th
contact areas and the central displacement in the config
tion corresponding to this energy minimum. To study hyst
esis in our system, we first moved the walls towards the
in steps of 0.01s steps and then away from the center of t
ball. After cycling several times back and forth within a ce
tain range of values ofd, the system started to move repr
ducibly along the same loop in thed-F plane. Figure 6
shows that there is a pronounced hysteresis: the forceF is
higher during the compression of the ball than during
decompression at the same values of the central displ
mentd.

Unlike systems considered in@11,12#, our system does no
exhibit return-point hysteresis. Hysteresis loops are de
mined only by the range of change of the central displa
mentd and they are substantially unaffected by the previo
history of the system~Fig. 6!. To obtain this figure we starte
with the system moving along the big loop between pointsA
andB, then we limited the range of change ofd. On repeated
cycling, the trajectory of the system in thed-F plane evolves
until it finally moves reproducibly along a smaller loop b
tween the chosen end points.~In systems exhibiting return
point hysteresis, there is no such evolution!. The final loop
was the same, independent of whether we were on the u
or lower branch of theA-B-A loop when we reduced th
range of change ind. Return-point hysteresis implies that th
system possesses a memory: ‘‘the state of the system
remember an entire hierarchy of turning points in its p
external field’’ @11#. This ability to remember previous his
tory arises from the existence of certain attributes of the s
tem that are quenched variables: the random local field
the magnetic systems@11# and the configuration of the po
rous media in the capillary condensation measurements@12#.
In our case, however, the ball molecules move around

FIG. 7. Two sets of hysteresis loops from Fig. 6 placed on top
each other.
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accommodate the increasing pressure without any c
straints. Thus, unlike the systems described in@11,12#, our
ball does not have any memory about its past history. T
molecules comprising the ball are in local equilibrium with
the free energy minimum that the system resides in.

Figure 7 shows that two sets of loops centered aro
different values ofd placed on top of each other. They hav
almost an identical shape. Since the contact areas are
different for these sets of loops, it is strongly suggestive t
in our system the hysteresis is due to bulk dissipation and
due to surface effects.

V. DETACHMENT OF SPHERICAL PARTICLES
DUE TO SHEAR FLOW

The problem of detachment of solid particles from so
surfaces is closely related to the adhesion of solids@15#.
Previous studies of this problem have identified three p
sible mechanisms for detachment: rolling, lifting, and slidi
@15#. In recent work,@16# King and Leighton have carried
out studies of the detachment of spherical particles due
shear flow. They assumed that the detaching particle is ro
and that the adhesion forces are negligible. Under these
sumptions they calculated translational and rotational velo
ties of the detaching particle. However, their results do
apply to the case considered here of molecularly smooth
ticles with a large work of adhesion.

To study this problem we used the following geome
~Fig. 8!: we took two parallel walls, filled the space betwe
them with a fluid, and put a ball on one of the walls. Initial
the ball was placed near the bottom wall and the system
allowed to equilibrate. In this study we used a ball of rad
of 3.5, consisting of 324 molecules. The molecules comp
ing the ball do not possess any long-range order. The am
ent fluid had a densityr50.8 and a temperatureT51.2.

In order to study the role of wall corrugation, we consi
ered a wall that was a combination of a smooth 3-9 wall a
a molecular wall, described before. The potential with wh
the wall interacted with other particles had the form

V~r !54eFbs~Dsz
292Csz

23!1bm( ~Dmr 2122Cmr 26!G ,

f

FIG. 8. Detachment of a solid spherical particle from a so
surface.
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FIG. 9. ~a! The x coordinate of the center of mass of the ball as a function of the applied shear rateg. bm51, bs50. ~b! The angle of
rotation of the ball abouty axis as a function of the applied shear rateg. bm51, bs50. ~c! The angular velocity of the ball vs the linea
velocity of the ball. The solid line represents a linear fit.bm51, bs50.
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where the sum is over all wall molecules,bs andbm are the
relative weights of the 3-9 and 6-12 potentials with the co
straintbs1bm51 to ensure a constant work of adhesionW,
again equal to 13.0.bm50 corresponds to a wall, which i
absolutely smooth in thex-y plane, andbs50 to a signifi-
cantly corrugated wall.

We equilibrated the system for 25t, and then we applied
shear to our system by setting the upper wall in motion in
x direction. We also divided our system into 50 horizon
bins and rescaled thex velocities of the fluid molecules in
each bin, so that the velocity of the center of mass of the
wasg(zi2zb), wherezi is thez coordinate of the fluid mol-
ecule,zb is thez coordinate of the bottom wall, andg is the
shear rate. In principle, it is possible to shear the fluid just
setting the upper wall in motion, without rescaling thex
velocities of the fluid molecules. However, our method lea
-

e
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in

y

s

to essentially the same results using a much smaller am
of computer time. The shear rate was increased at a rat
2.531023t22. To check that our results do not depend
the rate ofg increase, we let the ball sit on the wall at a val
of g slightly below the detachment threshold for a long tim
and found that the ball motion in thex direction was diffu-
sive, similar to that under zero shear rate.

Figure 9~a! shows thex coordinate of the center of th
ball as a function of the applied shear rateg for the case of a
purely molecular wall (bm51). Figure 9~b! shows the angle
of rotation of the ball about they axis as a function ofg. The
figure demonstrates that in this case the mechanism of
tachment is a mixture of rolling and sliding. The ball is tran
lating and rotating at the same time. Figure 9~c! shows an-
gular velocity of the ball as a function of its linear velocit
The linear fit of the formv5v/r eff , gives r eff514.461.4,
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FIG. 10. ~a! The x coordinate of the center of mass of the ball as a function of the applied shear rateg. bm5bs50.5. ~b! The angle of
rotation of the ball abouty axis as a function of the applied shear rateg. bm5bs50.5. ~c! The angular velocity of the ball vs the linea
velocity of the ball. The solid line represents a linear fit.bm5bs50.5.
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which is much larger than the radius of the ballr 53.5. Ob-
viously there is a significant slippage.

Increasingbs increases the amount of slip. Figure 1
shows the behavior of the ball for the case whenbs5bm
50.5. In this case the effective radius, obtained from
same linear fit as before,r eff519.660.8, is even bigger than
before, which can be easily understood, if one notes tha
this case the wall potential is much less corrugated than
fore.

The value of the shear rateg at which the detachmen
occurs in our simulations is much smaller than that predic
by continuum theory@15# which suggests that the detac
ment ought to occur at

gc50.3
W

Rh S W

RKD 1/3

.

e

in
e-

d

For the parameters in our simulation,gc50.13. From Fig.
9~a!, it is obvious that the detachment starts atg'0.03. The
continuum theory assumes that the detaching sphere
without slipping, while in our case, the significant slippa
makes the detachment easier. On comparing Figs. 9~a! and
9~b!, one observes that at first the ball starts sliding and o
later does it begin to roll. Rotational slip, in a somewh
different context, was found in@17#—the main difference
between this study and@17# is that here the rotational slip i
between two solid surfaces, whereas in@17#, the slip was
found at the surface of a solid sphere rotating in a fluid.

VI. CONCLUSION

In this paper we have reported results of studies of sev
problems related to the adhesion of solids on a microsco
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level. We have shown that the predictions of the JKR the
remain valid even on a microscopic level. We have obtain
excellent agreement between the JKR predictions and
results of our MD simulations without introducing any a
justable parameters. Our results have shown that introduc
of roughness and/or an intervening fluid causes deviat
from the JKR behavior. These deviations can be accoun
for by adjusting the value of the surface energy.

We have studied adhesion hysteresis using the metho
energy minimization. We have found that our system exh
its hysteresis that is unaffected by the previous history of
system. Unlike many other cases@11,12#, our system does
not exhibit a return-point hysteresis. We have also dem
strated that the hysteresis loops centered around diffe
values of the central displacementd have almost an identica
shape, strongly suggesting that the hysteresis in our sys
arises from bulk effects.
c

r-
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-
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m

Finally, we have studied the detachment of a spher
particle from a solid surface in a sheared flow. We ha
shown that detachment occurs via a mixture of rolling a
sliding at smaller values of the shear rate than predicted
continuum theories. Continuum theories assume that
mechanism of the detachment is rolling, whereas in
simulations there is significant slip between the detach
particle and the solid surface.
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